Raycap News

Information

RRH Surge Protection

Raycap is one of the world’s leading manufacturer of cable connectivity and lighting surge protection solutions for use in remote radio head (RRH) architectures. Raycap solutions are specifically designed to protect the sensitive radio equipment at the tower tops, as well as the equipment inside the ground shelters at a distributed base station (or RRH) architecture. The RRH architecture (also known as Fiber To The Antenna or FTTA solutions) is key to the development of next generation wireless networks and satisfies the industry’s need for increased capacity, advanced service offerings, and energy efficiency. This innovative architecture moves the active transmission equipment closer to the base station antennas, connecting them through fiber optic and DC power cables to the Base Band Units (BBU) which are typically located close to the DC power at the site.

Raycap offers a full complement of integrated Remote Radio Head (RRH) surge protection and connectivity solutions to enable and protect RRH architectures. These include field upgradable enclosures in a variety of sizes and capacities, cable solutions, mounting systems, connectivity solutions, as well as Strikesorb®, the ultimate lightning & surge protection for the exposed RRHs. Raycap’s connectivity and power protection solutions feature optional maintenance-free Strikesorb surge protection, engineered for use in RRH architectures to protect equipment from incoming lightning currents. Worldwide, Raycap’s solutions for RRH networks have been installed at more than 250,000 wireless sites.

The next generation 5G/LTE networks, as well as 2G, 3G & 4G networks, are dependent upon distributed telecommunications architectures, which are the focus of Raycap’s RRH surge protection and cable connectivity solutions. By providing the ultimate protection to mission-critical components at hard-to-reach locations, network assets are less vulnerable to damage from direct strikes and surge events produced by direct and coupled lightning strikes. Through mitigation of damages to the critical components, cellular carriers have the ability to lower their operational expenses through the reduction of the expected replacement rates for damaged equipment, as well as maintain a more consistent and continual uptime rate for customers.  Through ongoing and continual cell site surge protection on mobile networks, Raycap’s systems are able to assist carriers in building their businesses more efficiently and effectively, all the while maintaining better network uptime and reliability.

Raycap draws its expertise from RRH and FTTA/PTTA projects done with some of the largest mobile operators in the world. The company can leverage unprecedented expertise both at the design phase and throughout the life-cycle of the infrastructure and knows the key drivers of a successful FTTA/PTTA network roll-out. Raycap offers a combination of field-proven products to support any site scenario. Customization of existing products or fully custom new product development is available, depending upon an operator’s needs. Strikesorb systems are safer and far superior to conventional protection technologies for mission-critical architectures such as RRH and are the preferred protection device chosen by the largest mobile carriers and providers worldwide.

Surge Protection Special Devices

Surge Protection Special Devices

Industrial businesses rely upon the ability to function in a variety of harsh circumstances in order to maintain their ongoing ability to generate revenue.  Industrial business components are often manufactured with higher tolerances based on the need for a functionality that exceeds the typical requirements found in residential types of applications. All in all, industrial equipment must be more robust  because it is installed into harsher, more exposed environments that would typically damage less hardened  components.  Industrial equipment is required to function under conditions that are far more difficult than what is asked of most of the commercial equipment that we interact with on a daily basis.  Therefore the types of components found in industrial equipment and machinery, while being tougher than residential grade equipment, are also expected to be exposed to a variety of unforeseen circumstances that can also bring about damage.  We will often see these types of unforeseen things happening in a variety of ways, ranging from theft and vandalism due to the fact that industrial spaces are less populated than others, to damage as a result of weather because industrial equipment is often more exposed.  Either way, protection against the unforeseen is necessary in order to maintain the ongoing operations of the businesses as well as protect the bottom line as much as is possible. (more…)

Surge Suppressors

Protection of the sensitive equipment involved in the routine operations of industrial sites is paramount in order to avoid costly repairs, replacement delays and crucial data loss.  The fragile circuitry that functions within that equipment not only keeps the larger machinery online and functioning correctly, but also prevents even greater losses due to potential damage to less sensitive equipment through malfunction.  In essence, the computers, microprocessors and circuit-driven devices are the heart of the industrial site, and they must be protected against damage of any kind in order to ensure smooth operations.  Aside from the obvious potentials of theft and natural disasters, electrical overvoltage and power surges are the largest threat to the operations of most industrial sites, and unfortunately this fact is not understood by all owners and managers until it is too late and an accident has occurred.  Raycap is in the business of preventing accidents through surge suppression protection, and protection of your installation against these threats is our number one priority. (more…)

Electrical Protection For Industrial Sites

Industrial sites and factories that house industrial control equipment are often the unfortunate recipients of electrical overvoltage events caused by power surges and equipment switching errors.  As well, industrial sites are often in danger of being struck by lightning.  In addition to the obvious issues that come with a lightning strike, the volume of consumed electricity that is necessary to keep most industrial applications online makes them especially susceptible to electricity-related damage.  In order to minimize the damage to equipment caused by electrical surges, it is crucial to create a redundant electrical protection system for industrial sites. (more…)

Surge Suppressors For Electrical Protection

Surge suppression devices are the single best method of protecting equipment from electrical surges and overvoltage events.  Anyone with a computer or television understands the damaging effects of power surges on any equipment which contains circuitry, as a power surge to the home has the ability to easily knock equipment offline and destroy internal components that are only able to handle a limited amount of electrical current.  The exact same premise applies to industrial applications and sites, the only real difference is that the stakes are exponentially higher with far greater potentials for both damage and losses in industrial environments.  An electrical surge to a private residence can cause thousands of dollars in lost data and equipment failure, and an electrical surge to an industrial site can cause millions, let alone the risk of fire and other dangers.  The number one rule with regard to electrical surges is to avoid them if possible, and suppress them if necessary.  Raycap is a world leading manufacturer of surge suppression devices and systems designed to protect industrial sites from electrical surges and overvoltage. (more…)

Overvoltage Protection Systems From Raycap

Ongoing overvoltage protection

Raycap is recognized as a world leader in producing and manufacturing overvoltage protection components and systems designed for industrial applications. The unique Strikesorb SPD technology allows for previously unmatched levels of protection from electrical damage to sensitive equipment like microprocessors and computers. Overvoltage events can cripple any equipment connected directly to an electrical grid without interrupting equipment installed, being produced through a variety of accidents that can cause surges. These surges are immediate increases in the levels of electricity flowing from the source to the components and are generally the result of lightning, switching errors, operator errors, or malfunction. Raycap’s Strikesorb line of products acts as a barrier between equipment and electrical overvoltage levels, instantly diverting electrical current away from potentially damaged components if the critical level is exceeded. (more…)

Protecting The BSU

The cellular network that our cellphones connect to in order to allow us to have conversations, surf the internet and download media is reliant on towers to make these activities possible. This means that the coverage areas that your network provider is discussing in their marketing materials is based upon overlap between towers, and the ability of your phone to find a signal from a tower nearby. Your signal is weak if the closest tower is far away or obstructed, and it is cut off if there is no tower within range. Complete coverage means placing enough towers in the general vicinity of users to not have gaps, no matter where they go. Each tower is responsible for a portion of that area, and if that tower was to be rendered offline, then the other towers in the vicinity would have to take up the slack. Network providers rely upon equipment placed within these towers to make the functionality of coverage happen, with the RRH (remote radio head) being placed at the tower top and the BSU (base station unit) equipment being placed either at the bottom or outside of the tower itself. The units are connected through the power cables and data transfer lines that run between them. These same lines are responsible for one of the greatest weaknesses that exists within the cellular tower. That weakness is that events resulting in damage to the equipment at the top of a tower will generally also damage equipment at the bottom. (more…)

The Science Of Surges

Cellular networks are comprised of single cell towers covering areas with their signal, overlapping into as close to complete coverage for users as possible. Every cell user has experienced the “dropped call” or the lack of bars that illustrates a weak signal. These issues cause a poor user experience, and cell phone carriers are continually fighting the battle to improve the customer experience through more robust signals and greater connectivity. This means creating not only a network of towers that will provide as close to complete coverage without gaps as possible, but additionally the redundancy of a single tower which might be rendered offline should be compensated for by the surrounding towers. These issues are common, and as a result customers will move between carriers seeking a better experience for lower prices. This is where technology outside of the common equipment used in the process comes into play. (more…)

Understanding Surge Protection Devices

The concept of surge protection is relatively simple, but the technology that ultimately creates effectiveness within the defined parameters of these devices is continually evolving. “Surge protection devices” serve a single function, to prevent electrical flow beyond a specific measured amount from moving past the device itself and impacting the circuitry, wiring or internal components of equipment that is connected downstream. The electrical flow that is being monitored is generally moving along wiring or cables of some type that connect computerized devices together, or attach them to a source of power. These devices have a threshold of electrical power that cannot be crossed without component damage, resulting in the necessity of these components to be protected from any amount of electrical flow beyond that specific amount. The effectiveness of the device tasked with this prevention is measured in a few ways, mostly being seen in the completeness of cutoff or diversion of the electrical flow, the speed with which it is stopped, and the amount of time that it takes to re-establish the “functional” status of after the instance of an electrical surge. The most effective surge protection devices are going to be the ones that not only cut off the electrical flow instantaneously, but also remain in a protective state even after this happens. Over the years, technological advancements in the makeup of the devices have improved effectiveness dramatically, resulting in the ability to utilize increasingly sophisticated and expensive equipment without the routine damage or degradation of functionality that was expected in the past. Surge protection devices are extending the useful life spans of nearly everything they protect. (more…)

The Critical Nature Of Surge Protection

For most consumers surge protection is an afterthought that is only considered as a way of protecting their home computer equipment in the event of a large scale power surge. In many cases, this is a very rare occasion that may never be noticed more than some flickering lights, but in some areas these power surges will have a degrading effect on computers if they are allowed to run continually. Some communities have power grids that will have more common surge issues that may not be enough to completely trip the breakers in a home, or cut off the power flow through a surge strip. But even these minor fluctuations in flow can have the effect of shortening the life span of circuit driven equipment. In many people’s minds, the investment into expensive surge protection devices to keep a component safe that will ultimately be replaced within only a few years does not justify the added costs. While this economic decision does make sense, the situation cannot be compared to industrial installations when considering whether to add surge protection, and in these cases it is not only necessary but it may be critical. (more…)