Raycap News

Information

Lightning Surge Protection For Residential And Commercial Applications

Surge protection is the utilization of devices and systems to reduce the amount of damage that would occur if an unregulated flow of electricity was allowed to contact sensitive circuitry. The levels of protection that are able to be achieved are generally dictated by the necessity of monetary protection, and the highest end systems are mostly found in industrial applications or high end residences that have many thousands of dollars’ worth of computer equipment. The added necessity of keeping systems online and functioning from a business standpoint will also factor into the levels of surge protection that are chosen. The “industrial grade” surge protection devices are usually more robust versions of the same types of technologies that protect private residences, at least from a functionality standpoint.

Lightning protection is not the same thing as basic surge protection. If you have your computer plugged into a surge strip in your home or office, you are employing a low level of surge protection. Variations in the flow from the grid to your computer can slowly create circuit damage over time that is not as obvious as the immediate and acute damage caused by an unprotected surge. The small devices that you will employ in residential applications will mostly be determined by the value of the devices that you are protecting, most people not willing to pay thousands of dollars for a technologically advanced protection system to ultimately protect only a few thousand dollars worth of equipment. However today’s smart home systems that utilize high levels of technology to control aspects of your home, security and electronic functions can benefit from the inclusion of a higher end protection systems, more like those found within industrial installations.

Within commercial applications, surge protection systems must be technologically advanced and able to withstand the largest surges. Because the instances of lightning strike are more frequent within industrial installations due to their remote and unobstructed physical footprint, it would be foolish to believe that your structures will not ever be struck. When this happens, your equipment faces the very real danger of the surge that follows the strike coupling into attached cables or even traveling along parallel beams that have an ability to conduct electricity. The surge created by a lightning strike is at a much greater level but shorter duration than overvoltages caused by say switching components within a closed electrical system. Residential devices like surge strips are not designed to manage the high surges that come from lightning, and therefore will fail if a home or near vacinity is struck and not protected buy a robust surge protection device at the service entrance. Any device of that level would immediately be destroyed and provide no level of protection at all. Only industrial grade protection technology like that provided by Raycap devices will protect your investments against even the largest of surges, and keep your business functioning and online without interruptions. In a business environment, losses are not just found in equipment damage but also in downtime, so the avoidance of damage also assists in protecting the bottom line of the business as well. Whether it is residential or industrial surge protection that is necessary, Raycap has you and your business equipment covered.

Wind Turbine Lightning Protection Advances Green Initiative

It is unfortunate that cultures do not put more emphasis on the value of a technology for the purposes of creating a better world, as opposed to cost. Traditionally, advancements have existed for some time before being widely adopted, generally because they are cost prohibitive during the initial stages of development. When something is new, it may receive attention from small groups with vested interests in that area, but will not receive the mass rollouts that would be necessary to create a self-fulfilling situation of ongoing advancement. In the initial stages of development of almost anything, the initial group of those interested is willing to pay higher costs simply because they want to use that technology, even if it is available in a different form at a lower price. Only once costs have been driven down through general ”adaptations over time” does that technology begin to become more available to the wider audiences that will then supply additional research and development through their purchases. This is the case with green energy technology, which has existed as an alternative to fossil fuels for many years but has yet to receive widespread adoption in many areas of the world, even though it is known to be superior in most respects. The energy production models are chosen by the companies in control of consumer energy distribution, and they will nearly always choose the methods that have the lowest associated cost. Because they are “for-profit” businesses, they need to weigh the costs of production of the product against the environmental impact, then choose the production model based upon what the consumers are willing to pay. Profits are always considered before environmental impact in private businesses.

The green energy markets exist as tested and verified alternatives to fossil fuel production of the same product. Green energy models have had a higher cost of production in the past because of the cheap availability of fossil fuels, and the need for higher levels of technology to produce the energy that is purchased by consumers. The argument has traditionally been that since there is no pollution created, the method of choice should be green and consumers should be willing to pay a premium for it. Consumer support will generally go the opposite direction if there is not perceptible negative impact in the current time, essentially making the rollout of more expensive but cleaner products difficult because the public is unwilling to pay for them. People are willing to accept a certain amount of damage in order to save money, and as long as they cannot readily perceive that damage they will support the cheaper methods. This is why mass adoption of green technologies has taken so long, because the methods had to exist in working models for lengthy periods of time, evolving and streamlining on their own, to the point of finally representing the cheaper production method. Once the public can see that they will not only have a cleaner environment but will also pay less per month, their support shifts to the alternatives. This has been accomplished through the integration of technologically advanced surge protection devices, which curb the expected damages to equipment in the field as a result of power surges. Lightning strikes to wind turbines are a common cause of damage to computerized components, and through the integration of new and better surge protection devices that damage is being minimized more every year. We are now to the point where the costs of damage on a quarterly basis are lower than the costs of fossil fuel purchase, effectively making wind and solar power cheaper to produce. From the unlikely source of surge protection comes the evolution to an industry that will keep the world functioning, only without the pollution of the past.

How Surge Protection Systems Are Influencing The Future

Industry has evolved over the years beyond the point that many could have predicted 100 years ago. What was once believed to be the cutting edge of technology is now considered old-fashioned or obsolete, and as technology improves our advancements come even faster. Technology itself creates faster evolution of systems, and ultimately the benefits that those systems produce create more technological innovation. Just 30 years ago the concept of a home computer was beyond the scope of rational thought, and today we could not imagine life without them. As technology speeds forward and becomes more advanced, the need to protect that technology becomes more critical. Surge protection as a concept has not changed much in 100 years, essentially relying upon a method of stopping electrical flow by either diverting it or creating a gap it cannot cross, but the technology of how that is achieved has moved as fast as any other technology. The days of the circuit breaker may not be gone, but the methods of protecting systems that rely upon regulated electrical flow have advanced significantly.

The technological advancement of surge protection systems can be found in multiple areas, primarily in the components that make up the SPD itself, and the ability of the SPD to react faster and be restored to functionality quicker. The materials with which the SPD is constructed will determine how well it can survive a surge event itself. In the past, surge protection devices were destroyed in order to create the necessary gap, and eventually they evolved to a point of being able to be reset. This resetting process took time and manpower, and through the creation of more robust surge protection devices with upgraded housings and made of better materials including internal components able to withstand the potential damages they are exposed to daily, the devices themselves needed less attention. Once the technology had evolved to the point of the devices themselves not needing to be reset after a surge incident, we have found that the productivity of systems they protect has increased. Through the simple process of eliminating downtimes caused by surge protection systems doing their job, there is a greater level of productivity achieved, while at the same time money is saved that would have been spent on repairs and technician time. With every micro-second that can be shaved off the process of a SPD being triggered, there are millions of dollars in damages avoided. With every minute that is saved by not having a complicated resetting process involved in systems being returned to functionality, millions of dollar’s worth of products and services are created. Many people think that technological advancement of the systems that create products and services themselves are what is bringing us into the future. In reality it also has a lot to do with the protection systems that allow these configurations to function without damage or interruption that is moving us forward. We are entering a technological phase that will see new and improved devices coming online every day, and in the background the surge protection devices will be allowing them to do the job they were created for.

Does The Future Rest In The Hands Of Surge Protection Devices?

Does The Future Rest In The Hands Of Surge Protection Devices?

Surge protection devices and systems save hundreds of millions of dollars every year in damage that would have occurred as a result of power surges. The typical consumer understands this fact on a small scale, probably utilizing a power strip of some kind to protect their computer in their home. Consumers can probably grasp the magnitude of the savings when this exact situation is explained as being  in place in every industrial installation in the world, with businesses protecting their computerized investments with surge protection devices as well. While they may be more advanced and robust than your home power strip, the premise is the same. When a power surge happens, these devices instantaneously cut off the flow of power past the protective device and thereby protect the equipment on the other side. The monetary savings that surge protection devices provide is obvious every time a power surge happens, but there are larger issues at hand that many people are unaware of. For example, when people debate alternative energy production and environmental damage, they are probably not thinking about surge protection being a factor. (more…)

The Future For Alternative Energy And Surge Protection Devices

The Future For Alternative Energy And Surge Protection Devices

Most people will recognize the importance of alternative energy production methods like solar and wind power. Even those who are opposed to a widespread rollout of alternative energy methods will generally not be opposed to its development from anything expect a monetary standpoint, due to the fact that at the current time,  its use will cost consumers more than if the same power was produced through fossil fuel. The discussion isn’t whether or not the generation of power using free and clean fuel sources is a good thing, but instead how much people will pay for it. Unfortunately, this is what has stagnated its development over time, that those in power choose to align themselves with antiquated industries simply because it costs less at the moment, without consideration that the development of the technology itself will drive down prices.

The costs associated with alternative energy are found in equipment used in the process.  The wind and sun are free, and the real costs that are necessary to be covered by consumer pricing models are found in start up costs and in the repair and replacement of equipment. Wind farms and solar fields are generally found in remote locations and are unobstructed by larger structures. This is done on purpose in order to maximize the wind and sun that can be harnessed for the process, but it also opens the facilities up to lightning strikes and other weather-related damage as a result. When lightning strikes a component that is exposed in a green energy production facility, a surge of power travels along all connected lines from the strike point. This surge can damage attached computers and data processors that are critical to the functionality of the system, necessitating their repair before systems can be returned to working order. Costs are compounded in this regard, reducing surpluses of electricity that can be made using the free fuel sources while they are available and also increasing the operational costs. Reduction of this damage improves the functionality and drives costs down at the same time, resulting in lower prices that consumers must pay for power.

The development of better surge protection devices is not generally funded by government programs that alternative energy development rely upon to further their technology. This means that the private sector and companies like Raycap are leading the charge towards a cleaner world simply through the development of better products for our customers. As our surge protection devices and systems become more robust and technologically advanced their integration into alternative energy production facilities drives down consumer costs. The result is a cleaner planet that may be able to curb climate change simply by trying to save money. When a solution is both cleaner and cheaper, there is almost no argument against its widespread implementation over existing dead technology. Raycap is disrupting the systems and solving the issues of inefficiency within global power generation industries with or without the support of government funding. We are changing the future on our own.

 

Lightning Protection For Wind Turbines Is The Opportunity Of The Future

As the climate continually shifts throughout different areas of the globe that are growing increasingly reliant upon stable energy production systems, we find that the opportunities surrounding wind power are the most interesting.  The desire of most nations to reduce their reliance on fossil fuels brings developing green energy technologies to the forefront of most strategic discussions.  While the simple increase in the volume of wind turbines that exist potentially could increase the power production capacities in any country due to the fact that the wind itself is a free fuel source, there are still challenges that hinder this effort.  Repair and maintenance are the main challenge that faces areas that desire to increase their power production volumes using wind technologies..  Due to the high repair and maintenance costs that are associated with these types of systems, large rollouts are sometimes rejected.  Simply put, the argument between the low costs associated with fossil fuels and the higher costs associated with green energy technologies will many times be decided based upon the cheaper production method.  The superiority of wind technology with regards to pollution and climate change is not able to be argued.  A system that produces no pollution vs. a system that burns fossil fuels cannot be viewed as anything except superior.  The only argument against the widespread rollout of these clean technologies is the price associated with their production.  This is why driving down the costs within the wind power production arena may be one of the most important challenges facing the adoption of this technology.  If costs can be reduced to lower than fossil fuels, a cleaner world can be achieved simply by using the more cost effective methods.  This presents an argument that is almost unable to be defeated. (more…)

Lightning Protection For Wind Turbines

Continually changing climate conditions, combined with the increasing dependence of developed countries on fossil fuels, has pushed interest in renewable energy sources to the forefront globally.  While all green energy technologies are being developed and refined, wind power is one of the most promising.  As governments put forth aggressive programs designed to increase their wind power production, these increases to the amount of wind turbines bring forth an additional increased statistic.  With more wind turbines comes more damage as a result of lightning strikes.  Surge protection has become a critical component when viewed by the majority of people interested in these developing technologies. (more…)

Wind Power Production And Lightning Protection

When nations worldwide attempt to increase their power production capabilities in order to satisfy their growing populations, the discussions of which methodology should be used to produce this power become critical.  Utilization of fossil fuel technologies has a proven track record of stability and the ability to satisfy demand.  The tradeoff to the rollout of these types of power production methods is pollution and damage to the environment.  Additionally, fossil fuel prices can fluctuate dramatically, creating chaos where stability is necessary.  The utilization of green technologies to produce the same power eliminates the instability of fossil fuel prices from the discussion.  The wind is a free source of fuel which can turn the turbines the same way that the burning of fossil fuels does.  Because the fuel source has no cost, the maintenance and upkeep of the systems are the only costs which must be covered by consumers.  These production methods also do not produce pollution or release damaging elements to the climate.  The drawback to the widespread utilization of wind power is that the systems are more sensitive to damage as a result of inclement weather than fossil fuel systems.  In a nutshell, lightning strikes and other environmental factors that can cause damage to the physical structures involved in wind power generation drive costs higher than fossil fuel production methods, at the current time.  Through experimentation and utilization of technologically advanced surge protection systems, the opportunity to drive down costs presents itself. (more…)

Protection From Lightning On The Industrial Level

Industrial installations are very much like the components that you have within your home, only on a significantly higher level of both cost and electrical consumption. These components are also more robust than anything that you would see in a residential area, in every capacity.  Because of the increased demands on these types of components, efforts are made to create the toughest equipment possible. One thing that is surprising about many industrial systems is that they utilize components that are easily damaged through excess electricity. You can make the shell as tough as you want, but the equipment can still be damaged through electricity moving along the lines that connect it to other equipment in the system. What this means is that even though steps are taken to create as much shielding from the elements as possible, there is a certain amount of damage that is expected to happen to these pieces of equipment simply due to power surges. The electricity that flows within industrial areas is significantly higher than in residential. The utilization of larger equipment for processes requires it to be so. This also requires that the typical power lines that connect equipment to the power grid are able to handle substantially higher loads. The issues happen when power surges occur beyond the levels that are expected, and out of the range that the internal circuitry of this equipment can handle. (more…)

Lightning Protection and Surge Protection

Read More: https://www.raycap.com/lightning-surge-protection-for-residential-and-commercial-applications/

Surge protection and lightning protection are similar concepts with independent systems involved in each function.  While there is crossover between the two with regardto protection of sensitive equipment and computerized systems against surges, the lightning protection models involve both different equipment as well as a different philosophy.  For the sake of discussion, the sources of each type of power surge must be identified, and even though the methodology utilized against power surges of all types remains the same, the identification of the source will determine whether standardized surge protection or lightning protection created the savings against loss. (more…)