Raycap News

Information

Industrial Surge Protection Devices

Read More: https://www.raycap.com/industrial-surge-protection/

In the modern industrial business, the equipment being used is almost exclusively dependent upon microprocessors and electronic devices, creating a critical need for far higher levels of protection against electrical surges than ever before. Because of the extensive use of computers, microprocessors, programmable logic controllers, and various other electronic components that are utilized in the automation aspects of machine programming, motor speed, and tool changes, these systems are now incredibly vulnerable. Power surges are now one of the leading causes of breakdown, catastrophic failure, process interruption or premature aging, and failure of equipment. Only through the effective deployment of industrial surge protection can manufacturers keep equipment safe and processes running reliably, ultimately mitigating disruptions and outages as well as damage due to surge-related occurrences. Surges are typically generated externally through incidents like grid switching and lightning strikes. This is not to say that there are not also internal events that cause power fluctuations and overvoltage problems. Grid side surges outside of the plant can also produce power fluctuations that are seen throughout a facility. Regardless of the source, power surges and fluctuations negatively and adversely affect machinery and productivity across the board. Only through the integration of facility-wide surge protection devices, applied throughout the electrical distribution system all the way from the electrical service entrance to the single-phase loads, is damage mitigated. (more…)

Industrial Surge Protection Devices And You

Read More: https://www.raycap.com/industrial-surge-protection/

Understanding the differences between residential surge protection devices and industrial surge protection devices is not necessarily one of the most important things for people to learn, but understanding that your daily life relies upon industrial surge protection is probably a good idea. Modern life has been so influenced by technology that we are at a point where almost any productivity revolves around technology and connectivity to different systems. Just the simple act of picking up a cell phone and checking for driving directions in order to make it to a meeting involves several systems that are all reliant upon industrial surge protection to stay online.  From the cell towers themselves being able to transmit and receive signals to the data processing that is involved in providing the information that you are seeking through that device, industrial surge protection is touching your life and impacting it in several ways. The ability to receive the directions that you seek might create an inconvenience if it was unavailable, but in an emergency a total shutdown of your ability to utilize your phone can have consequences that are far more dire. Our reliance upon surge protection devices happens in the background of life and is rarely considered until those devices need to perform their job. One of the interesting aspects of surge protection is that it exists in a state which ultimately makes it easy to forget that it is there, until it performs its duty. The tasks that surge protection devices have are simple, protect equipment and systems from damage and outages by preventing excess electricity from passing through them. Surge protection devices are the gatekeeper that keeps electricity flowing within a range that is specified. As a result, surge protection devices ultimately save millions of dollars per year in damage and increase productivity to a level that can never be quantified due to society’s almost complete reliance upon it. (more…)

Surge Suppressors And Surge Protection Devices

One of the common questions that is asked online is the “differences between surge suppressors and surge protectors.” The two terms are commonly used interchangeably along with other phrases like protector, arrestor, suppressor, regulator, limiter, and TVSS. While lay people use these terms to describe nearly any device that limits excesses of voltage past the point of their install, there are differences based on the technologies and needed protection level. The basic use of surge protectors is to prevent damage to electronic equipment by voltage spikes or “transients”. A surge protector regulates voltage and prevents it from reaching a certain threshold. Electrical surges or spikes are short duration but higher voltage than can be managed by attached equipment.  A surge protector detects the surge and cuts the power flow either temporarily and staying “alive”, or permanently and sacrificing itself. Once a protection unit has been “sacrificed” the downstream equipment is no longer protected and, in the event of another surge before a replacement can be made, equipment can be damaged or destroyed.

Surge protectors that have an ability to take a surge, divert that surge, and then continue to protect are rare, and these devices are in high demand for mission critical industrial applications such as telecommunications, energy and transportation. All devices have a joule rating of the peak levels of energy they are capable of absorbing, but the better ones can absorb more and continue to work. If a component has absorbed the maximum amount of energy within its rating, it becomes ineffective at protecting against subsequent surges and must be replaced. Depending upon where these devices are placed, some are utilized for more critical protection functions such as lighting strikes while others manage transient voltage surges or “overvolatges”. The surge produced by a lightning strike is far too high for many traditional surge protection technologies to manage, and lightning itself has driven much of the technological advancement seen in the past 30 years in the field of surge protection.

While technologies and solutions that are utilized to protect industrial installations against lightning strikes are more robust than those being used to handle lower level surges, the real difference is in the surge rating of the device. Class 1 (Type 1), Class 2 (Type 2) and Class 3 (Type 3) devices all have their own particular place before and after the power meter and inside the facility, be it an office or home. When installed in order to provide a level of protection necessary to keep hundreds of thousands of dollars’ worth of equipment functioning safely, most systems are going to involve all levels of installation, each created for different purposes at different locations. With the ultimate desire being to keep the surge of electricity away from components that would suffer damage, each surge protective device is generally installed at the correct place and directed by the electrical code. In this way, different levels of surge protection are used to cover any path that the surge might take. The installation of the correct types of devices at junction boxes, along lines and cables, and overhead is the only way to effectively limit the instances of damage to the lowest possible numbers. The inclusion of technologically advanced devices like the Class 1 and Class 2 rated Strikesorb product lines, which are capable of taking multiple surges without self-sacrifice, will provide the necessary protection against lightning. As the cost of equipment that is put into harm’s way goes up, so does the necessity to think about the surge protection systems that keep the equipment safe. In many cases, these devices may be technologically superior to the devices that they are protecting, keeping critical systems online and functioning without interruption.

Lightning Surge Protection Devices

Lightning Surge Protection Devices

Industrial surge protection is a key factor in determining profitability in both existing and emerging industries today. As investments in equipment necessary to operate in an increasingly technological world become greater, the need to protect that equipment also becomes more crucial. While new industries were born within a technological age and have never operated in a different way, even older industries are feeling increased pressure to computerize in order to compete with competition. Simply put, there is almost no industrial business today that does not operate with some level of technological involvement, and all of those businesses need to cut costs to compete. One of the most obvious methods of reducing expenses is to prolong the expected life span of the expensive equipment, which ultimately adds to the bottom line by going beyond the point where it would be expected to be replaced. Continuing to function past an expected and predicted point provides additional revenue, and methods of creating this extended life situation are to the benefit of any business seeking lower operational costs. This is where industrial surge protection devices do their work. They exist soley for this purpose, as well as to keep the systems they protect online and functional. Surge protective devices are integrated into these facilities at a cost that is always lower than the replacement cost of equipment that may be damaged by power surges. (more…)

Can Surge Protection Devices Stop Global Warming?

Can Surge Protection Devices Stop Global Warming?

Climate change is real and it is happening. Even though debates are usually framed with the question “is climate change real,” what is actually being debated is not the reality of any change in climate. Any quick research into weather patterns and ocean temperatures prove that there is a progressive heating up of the planet occurring. The actual debate is if mankind is to blame and if there is anything we can do to change the current path. Some of the answers may be found in the energy production industries, where this debate is clearly located. Proponents of alternative energy production methods argue that fossil fuel burning causes enough damage to the environment to warrant extra costs. Proponents of traditional power production methods argue that the minimal damage to the environment that pollution causes is not worth the added costs that consumers would need to pay. The resolution of the debate would be found if the alternative production models were both cleaner and cheaper. As the alternative energy production methods become more efficient, this day is rapidly approaching. (more…)

The Future Of Climate Change And Surge Protection

The concept of climate change involves the earth becoming progressively more unstable as far as weather patterns, resulting in higher high temperatures and lower low temperatures. In addition, we see the oceans becoming progressively warmer and storms becoming stronger and more frequent. Even a few degrees difference from the norms can cause large scale upheaval to our ecosystem, and create difficulties for life on earth. The pattern of increasing weather instability may or may not be related to manmade issues, and as a result there are two camps of people, each defending a different side of the debate. One side holds that climate change is a result of factors like pollution and greenhouse gasses created by the continued operation of systems that destroy our atmosphere, and the other claims that the damage caused is minimal enough to ignore. Neither side claims there is no pollution being created, and instead they disagree on the amount of damage that pollution causes and what can be done about it. Proponents for fossil fuels argue that the costs associated with a switchover to alternative energy models are not worth the amount of damage the pollution causes. (more…)

Industrial Lightning Protection Systems

With industrial businesses, the extension of the lifespan of equipment is a continual challenge.  Many industrial installations are in remote areas that are also exposed to the elements, so we find that equipment will typically have a far shorter operational lifespan than equipment that is housed within a more protected space. While every effort is made on behalf of these types of businesses to protect the equipment utilized in their processes, it is always done with the knowledge that equipment damage must be planned for. One of the more surprising aspects of this protection planning is that the equipment that is sometimes damaged is actually adequately shielded from the elements.  The damage that occurs happens because it is attached or connected to other areas which may have been exposed to the elements. With industries like the cellular business or alternative power production methods, the high tech equipment that is utilized in the processes is actually not completely exposed itself.  In these types of setups, we will usually see some form of exposed equipment that is connected directly to shielded equipment through power lines or data transfer cables. The problem is that when lightning strikes happen in exposed areas, the subsequent power surge that follows a lightning strike travels along pathways and can damage equipment downstream if lightning protection ins not installed. There is almost no way to completely prevent a lightning strike, and most businesses have figured out ways to position only a limited amount of equipment in the areas that are high risk. With the expectation of lightning strikes happening at these points, losses are minimized through the utilization of only necessary equipment at that point. More expensive or more high tech equipment is positioned within more shielded areas, and that equipment is further protected through the installation of surge protection devices along these lines.

(more…)

How Lightning Protectors Improve Cell Service

We have grown so used to our phones being a direct communication line to other people as well as the internet that we rarely think about the technology involved in this process. We have grown so used to using them on a daily basis that we no longer think about what is necessary to make the entire process happen, and also the challenges that are faced by the cellular companies. Intense competition between companies has reduced the margins that they operate within to extreme levels. Customers now demand not only the fastest and clearest calls and internet connections, but they want it for a price that is almost unfathomable. When we think about the increasing demands that customers are placing on cellular companies in the form of faster networks and the ability to transmit or receive large amounts of data, only then do we start to consider the challenges that are faced by the companies that provide these services. We’re finding that the ways that these companies are now improving their own bottom line is through exploration of technological advancements to enable savings in both operating and capital expenditures. By deploying improved surge protection devices on their networks, cellular providers have been able to increase their profitability, and remain competitive within the space. If not for these devices installed on the network, cellular companies would be required to raise customer prices, and consumers will rarely tolerate large increases.  Through the ability to find cost savings by extending the life span of equipment, customer prices are able to remain relatively low while network capacities are increased to meet demand. (more…)

The Importance Of Lightning Protectors

One of the more important discoveries over the course of the last 50 years has been the improvements to uptime of mission-critical systems enabled by advanced lightning protection technology. Lightning protectors are essentially surge protection devices which are strategically positioned throughout a connected system of electronic equipment. They create a barrier between exposed areas which are ultimately vulnerable to lightning strikes during inclement weather. While there is little that can be done to completely eliminate damage to equipment that is directly struck by lightning, there is an ability to salvage downstream equipment that (more…)

Lightning Protectors

One of the common questions that is asked regarding the systems that create functionality as well as protection within industries like telecommunications as well as green energy production is “what are lightning protectors?” A lightning protector is a device which is placed at critical junctures within a technical system in order to provide electrical protection for downstream equipment.  The protection that is provided is against the associated electrical surge that follows a lightning strike.  The idea is to prevent an electrical surge from being able to move along and through power lines or communication cables which connect and expose any connected computerized or data processing equipment that is located there or elsewhere along a path connected by cables or in the same metal structure.  For example, in a cellular tower the top area that is exposed would serve as the “end unit,” being in a direct line to the elements. (more…)