Green energy production is an evolving industry. For many years, the methods used to produce electricity for public consumption remained relatively unchanged, extracting fossil fuels from the earth and burning them in order to move turbines. The movement within these turbines generates electricity which is able to be harnessed and stored, then supplied to individual consumers through a grid system. While there have been technological improvements over the years to the power grids themselves, as well as to the storage and transport mechanisms, the method of creation has lagged technologically. Instead of moving towards alternative methods of moving the turbines themselves, industry has experimented with alternative fossil fuels, simply concentrating on getting the most energy produced by the burned fuel system. Even though it is common knowledge that there are methods that can move the turbines just as effectively without burning a fuel source, cost hindered the development and advancement of these industries. Due to the fact that the energy production industries are for-profit businesses, their interest is creating the product as cheaply as possible within any regulations that exist. Regulations will almost always center on the negative by-products of the process, so industries find that it is cheaper to lobby for removal of the regulations than it is to develop alternative processes. The green energy methods have existed for many years, but have never been fully adopted by the major players in the market simply because it was always cheaper to use fossil fuels, even though there are negative side effects. Technology will advance even if there is not widespread adoption, and although it has taken significantly longer than it would have with major support, we are finally entering a time period where the major industries will more fully support green technology simply because it makes good business sense. Green energy production is finally hitting a point where it is both cleaner and cheaper.
The major factors that were hindering the adoption of green technologies were costs due to necessary repairs to equipment. The technological processes used in wind and solar energy production rely upon computerized equipment that is continually in harm’s way, due to the fact that it is positioned in the field and exposed to hazards like lightning strikes. In wind turbines, the physical makeup of the structure that is necessary in order to achieve maximum efficiency also makes them a prime target for lightning. The wind turbines sit in remote and unobstructed areas where wind flow will be maximized, and they are generally the tallest structure in that vicinity. Lightning strikes to the blades are common as a result, and the surge of power that follows a lightning strike will produce damage to equipment that is connected to the structure. As a result, a lightning strike to a wind turbine not only destroys the blades, but also destroys the computer equipment attached to it. These costs are being reduced through the evolution of more technologically advanced surge protection devices, lowering the costs of production as a result. Surge protection devices are developed for the purpose of reducing surge related damage to equipment in all industries, so the technological evolution of the devices is not tied to adoption by one industry. The more advanced and efficient these surge protection devices become, the more they can be used to bring down the prices of green energy, ultimately forcing the fossil fuel production methods to be reconsidered in favor of the less expensive methods. Surge protection is a key to the future of the climate, and casual observers probably do not even realize it.